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1 Department for Sports, Exercise and Health, University of Basel, Birsstrasse 320 B, 4052, Basel, Switzerland
2 Particle Technology Laboratory, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland
3 Department of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Zurich, Rämistrasse 100, Zurich 8091, Switzerland
4 Center of Laboratory Diagnostics, MVZ Clotten, Merzhauserstrasse 112, 79100, Freiburg im Breisgau, Germany
5 These authors contributed equally to this work
6 Author to whom any correspondence should be addressed.

E-mail: andreas.guentner@ptl.mavt.ethz.ch

Keywords: breath analysis, lifestyle applications, metabolism, volatile organic compounds, mass spectrometry

Supplementary material for this article is available online

Abstract
Exhaled breath acetone (BrAce) was investigated during and after submaximal aerobic exercise as a
volatile biomarker for metabolic responsiveness in high and lower-fit individuals in a prospective
cohort pilot-study. Twenty healthy adults (19–39 years) with different levels of cardiorespiratory
fitness (VO2peak), determined by spiroergometry, were recruited. BrAce was repeatedly measured
by proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS) during 40–55 min
submaximal cycling exercise and a post-exercise period of 180 min. Activity of ketone and fat
metabolism during and after exercise were assessed by indirect calorimetric calculation of fat
oxidation rate and by measurement of venous β-hydroxybutyrate (βHB). Maximum BrAce ratios
were significantly higher during exercise in the high-fit individuals compared to the lower-fit group
(t-test; p= 0.03). Multivariate regression showed 0.4% (95%-CI=−0.2%–0.9%, p= 0.155)
higher BrAce change during exercise for every ml kg−1 min−1 higher VO2peak. Differences of BrAce
ratios during exercise were similar to fat oxidation rate changes, but without association to
respiratory minute volume. Furthermore, the high-fit group showed higher maximum BrAce
increase rates (46% h−1) in the late post-exercise phase compared to the lower-fit group
(29% h−1). As a result, high-fit young, healthy individuals have a higher increase in BrAce
concentrations related to submaximal exercise than lower-fit subjects, indicating a stronger
exercise-related activation of fat metabolism.

1. Introduction

Regular exercise reduces the risk of all-cause mor-
tality [1] and is particularly important for per-
sonalized prevention and treatment of metabolic
disorders, such as obesity [2], diabetes [3], dys-
lipidemia [4], non-alcoholic fatty liver disease [5]
and metabolic syndrome. High cardiorespiratory fit-
ness (CRF) may improve metabolic responsiveness
towards exercise stimuli [6]. Therefore, simple and
accurate non-invasive monitoring of the individual
metabolism is desired to personalize exercise mod-
ality, intensity and duration for optimal metabolic
adaptations [7].

Endogenous volatile organic compounds (VOCs)
in exhaled breath are promising for real-time mon-
itoring of metabolic processes [8]. In particular,
breath acetone (BrAce) is closely related to fat meta-
bolism [9], thus reflecting metabolic responsive-
ness. Specifically, hepatic β-oxidation of fatty acids
leads to an accumulation of acetyl coenzyme A,
which further divides into the ketone body acet-
oacetate [10]. The latter undergoes decarboxyla-
tion and enzymatic degradation to acetone and
β-hydroxybutyrate (βHB), respectively [10]. In con-
trast toβHB and acetoacetate, acetone is highly volat-
ile and, hence, measurable non-invasively in exhaled
breath [11] rendering its detection attractive for
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routine metabolic assessment with compact sensors
[12] that were integrated already into industrial pro-
totype devices [13]. Note that there are other sources
of endogenous BrAce including the dehydrogenation
of isopropanol and amino acid degradation [9], but
the first is relevant only in case of toxic isopropanol
ingestion [14].

BrAce increases during both constant [15] and
graded exercise [16], showing a peak at about 45%
of the total workload during an individualized graded
exhaustive exercise bout [17]. However, exercise pro-
tocols in previous studies [15–17] were not stand-
ardized for the individual CRF, expressed by max-
imum oxygen consumption (VO2peak), that affects fat
metabolism during exercise [6, 18–21]. Furthermore,
BrAce is known to increase during post-exercise rest
[7] that can be particularly important for exercise-
associated weight reduction and mitigation of meta-
bolic risk [22], but its relation to CRF has not been
assessed yet.

This study investigates BrAce changes in high-
and lower-fit individuals during and after CRF-
standardized submaximal cycling. Therein, BrAce
concentrations were monitored online by proton-
transfer-reaction time-of-flight mass spectrometry
(PTR-TOF-MS) connected to a tailor-made buf-
fered [23] end-tidal breath sampler [24]. Simul-
taneous measurement of the fat and ketone body
metabolism through indirect calorimetry and venous
β-hydroxybutyrate (βHB) enabled a comparison to
BrAce.

2. Methods

2.1. Study design and population characteristics
This pilot-study has been approved by the Ethikkom-
missionNordwest- undZentralschweiz (EKNZ2018–
00525) and is in accordance with the declaration
of Helsinki. Informed consent from all study par-
ticipants was obtained in written form and volun-
teers received no expense allowance. We calculated a
sample size of twenty participants to reach a statistical
power of at least 80% to detect relevant differences
in BrAce concentrations between high- and lower-
fit individuals. Twenty healthy volunteers with differ-
ent histories of exercise habits (12 women, 8 men),
aged between 19 and 39 years, participated in this
study. None of them had relevant comorbidities or
special dietary habits (e.g. low-carb). Each participant
attended two appointments separated by, at least, five
days (to avoid interfering effects of the previouswork-
load), but no more than three weeks. At the first
appointment, eligibility was assessed and exhaust-
ive spiroergometry was conducted for determination
of CRF as well as the individual workload at the
second ventilatory threshold (VT2). The VT2 is the
maximum exercise intensity at which endurance per-
formance through aerobic metabolism is possible. At
the second appointment, each participant underwent

a submaximal exercise intervention. All participants
were asked to abstain from alcohol, tobacco and
intensive exercise 24 h prior to the appointments.
Further, they were advised to consume a low-carb
dinner at the evening before and avoid chemical
mouthwash 2 h before the second appointment.

2.2. Baseline data collection and exercise
intervention
At the first appointment, we conducted a med-
ical interview and examination, a 12-lead resting
ECG and blood pressure measurement. Body weight
was measured to the nearest 0.1 kg (InBody720,
InBodyCo., Ltd., Seoul, South Korea). Afterwards, we
determined VO2peak and the VT2 by spiroergometry
(Ergoline ErgoSelect 200, Bitz, Germany equipped
with MetaLyzer 3B-R2 spirometer, Cortex Biophysik
GmbH, Leipzig, Germany). The ergometer incre-
mental rate (10, 15 or 25 W per min) was chosen
out of three protocols according to the expected max-
imum performance. The incremental rate was calcu-
lated following Hansen et al [25] with height, age and
weight provided in the units of centimeter, year and
kilogram, respectively:

incremental rate= (VO2peak −VO2unload)/100 (1)

VO2peak = (height− age) · x, with x
= 20 for men and 14 for women (2)

VO2unload = 150+(6 ·weight) (3)

The protocol was chosen as the closest to the
calculated incremental rate and the respective initial
ergometer intensity was selected as 10, 20 or 50 W.

Standardization of the test included fulfill-
ment of standard laboratory criteria [26], verbal
encouragement and adherence to current recom-
mendations for control of maximal participant
effort [27]. The VO2peak was accepted as the
highest average of three values, which were con-
secutively measured in 10 s intervals. Two experi-
enced examiners checked the automatically detected
VT2 and readjusted, if necessary. In agreement
with literature [28], male participants with a
VO2peak > 40 ml kg−1 min−1 and female participants
with a VO2peak > 34 ml kg−1 min−1 were classified as
high-fit (n= 13).

The second appointment started at 8 a.m. after
an overnight fast (>8 h). An individualized submax-
imal aerobic exercise protocol was applied, represent-
ing a common type of exercise used by non-athletes
to improve their fitness and general health [29]. We
used a stepwise incremental protocol that started at
20% of the individual VT2 (determined in the first
exercise test) and increased by 10% every 5 min (fig-
ure 1). After 40 min, submaximal intensity of 100%
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VT2 was reached and the participants continued until
exhaustion or for a maximum of 15 min. Participants
were asked tomaintain a cadence of 60 to 75 rpmdur-
ing the whole exercise. Respiratory minute volume,
VO2 and VCO2 were continuously monitored for
indirect calorimetric measures (figure 1, blue line).
We calculated fat oxidation rates for all VO2 and
VCO2 values during exercise with the formula of
Jeukendrup et al [30]. Calculated fat oxidation rates
were then averaged for every intensity level. The post-
exercise period lasted until 4 h after the start of exer-
cise.

Blood samples were taken from an intravenous
line that was installed prior to the measurements. A
blood sample of 7.5 ml was drawn before and imme-
diately after exercise, every 30 min during the first
post-exercise hour and then every hour until the end
of the post-exercise phase (figure 1, squares). Blood
samples were centrifuged for 10 min (3000 rpm,
20 ◦C; Universal 320 R, Hettich Zentrifugen, Baech,
Switzerland) immediately after they were obtained
and only the serum was stored at −80 ◦C. After all
samples of every participant had been collected, they
were analyzed for βHB (Center of Laboratory Dia-
gnostics, MVZ Clotten, Freiburg, Germany or Insti-
tute of Clinical ChemistryUniversityHospital Zurich,
Switzerland). Note that some βHB levels were below
100 µMwhere the quantification is less accurate.

2.3. BrAce analysis
End-tidal BrAce concentrations were measured at
the second appointment with a benchtop proton-
transfer-reaction time-of-flight mass spectrometer
(PTR-TOF 1000, Ionicon Analytik, Innsbruck, Aus-
tria) suitable to detect lowest BrAce concentrations
[31]. Primary ions (H3O+) were generated from
water vapor. The drift tube was operated at a voltage
of 600 V, a pressure of 2.3 mbar and temperature
of 60 ◦C. The value of the reduced electric field in
the drift tube (E/N) was 130 Td. The BrAce (CAS
67–64-1) was determined at a mass-to-charge ratio
of 59.050 (C3H7O+) [32]. Four-point calibrations in
the range of 500 to 1500 parts-per-billion (ppb) were
carried out for absolute quantification of BrAce con-
centrations. For that, a certified acetone standard (10
parts-per-million (ppm) in synthetic air 6.0, PanGas,
Switzerland) was dosed to synthetic air (CnHm and
NOx ≤ 0.1 ppm, Pan Gas, Switzerland) using a sim-
ilar mixing setup as described in literature [33]. Back-
ground acetone concentrations were typically below
100 ppb.

The baseline was obtained by averaging BrAce
concentrations from three exhalations collected
within 15 min just before exercise (figure 1, dia-
monds). During exercise, breath samples were collec-
ted 30 s before the end of each intensity level (every
5 min). For this, the spirometer mask was shortly
removed while cycling was continued. After exercise,

breath samples were collected every 30 min while
the participants rested. Correct and standardized
sampling of end-tidal breath is crucial for meaningful
breath analysis [34]. Therefore, participants exhaled
completely through a sterile and removable mouth-
piece (EnviteC-Wismar GmbH, Wismar, Germany)
into a tailor-made buffered end-tidal [23] breath
sampler with tube length of 375 mm, as described
[24] and validated [7] elsewhere. Note that the flow
restrictor was removed to enable fast exhalations dur-
ing exercise [24]. The breath sampler consisted of
inert Teflon and all surfaces in contact with breath
were heated (60 ◦C) to avoid analyte adsorption
and/or water condensation. A pump (130 ml min−1;
Schwarzer Precision, Essen, Germany) guided the
breath sample via a heated (60 ◦C) Teflon transfer
line to the PTR-TOF-MS. A CO2 sensor (Capnostat 5,
Respironics, Murrysville, Pennsylvania, USA) placed
in the transfer line was applied to evaluate if the
participants reached the end-tidal breath portion
(CO2 > 3% [35]) at the end of their exhalations.

2.4. Data analysis
Data analysis was performed using SPSS version
25.0 for Windows (SPSS Inc. Chicago, Illinois, USA)
and OriginPro 2018 G (OriginLab Corporation,
Massachusetts, USA). Descriptive analysis included
means and standard error of the mean (SEM). The
level of significance was set at p≤ 0.05 and estimated
effects were reported with 95% confidence intervals
(95%-CI) in all tests. BrAce andβHB concentrations,
fat oxidation rates and respiratory minute volumes
were normalized to the individual baseline con-
centration to account primarily for exercise effects.
Independent two-sampled t-tests were conducted for
comparison of high- and lower-fit subjects regarding
their maximum normalized BrAce (peak divided by
baseline BrAce concentration), and similarly for fat
oxidation rate, respiratory minute volume and βHB
during exercise as well as the post-exercise period.
Age- and sex-adjusted multivariate linear regression
was used for analysis of the associations between
maximum normalized BrAce during and after exer-
cise with VO2peak. Finally, the changes of normal-
ized BrAce during and after exercise were compared
against the change of fat oxidation rates and βHB
concentrations.

3. Results

3.1. Baseline characteristics
Twelve women and eight men aged 19–39 years
were included into statistical analysis. None of them
was suffering from cardiovascular or respiratory
diseases and all were non-smokers. Mean VO2peak

were 48.2 ± 2.0 ml kg−1 min−1 in the high-
and 32.7 ± 2.0 ml kg−1 min−1 in the lower-
fit group (p < 0.001, table 1). Mean BMI were
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Figure 1. Intervention protocol. The exercise protocol was standardized on the individual VT2. The graded exercise started at
20% of VT2 and increased every 5 min by 10%. Submaximal intensity of 100% VT2 was reached after 40 min and sustained until
exhaustion or for a maximum of 15 min. Blood samples were taken at baseline (t= 0 min), at the end of the exercise bout and 85,
115, 175 and 235 min after the start of exercise. BrAce samples were taken at baseline and every 30 s before the end of an intensity
level during exercise as well as every 30 min during the post-exercise period until 240 min after baseline. Indirect calorimetric
measurements were obtained continuously during exercise.

21.4± 2.3 kgm−2 in the high- and 28.8± 7.1 kgm−2

in the lower-fit group (p < 0.03).

3.2. BrAce, fat oxidation and relation to CRF
during aerobic exercise
Age- and sex-adjusted multivariate regression sug-
gests a positive association between maximum
normalized BrAce during exercise with weight-
adjusted VO2peak with 0.4% (95%-CI = −0.2%–
0.9%; p = 0.155) higher BrAce for every
ml kg−1 min−1 higher VO2peak. No such association
was found during the post-exercise period of 3 h.

Baseline BrAce concentrations were similar
(p = 0.93, table 1) for the high- (960 ± 125 ppb)
and lower-fit groups (942 ± 151 ppb), in agree-
ment (mean: 951 ppb) to 67 healthy subjects after
a comparable overnight fast [36]. However, max-
imum normalized BrAce during exercise was higher
in the high-fit group compared to lower-fit individu-
als (p = 0.03; table 1). In the high-fit group, normal-
ized BrAce constantly increased during exercise at a
rate of 33% h−1 at low intensities (until 40% VT2)
and at a rate of 9% h−1 at higher intensities (figure
2(a)). In the lower-fit group, normalized BrAce hardly
increased at low intensities (rate of 0.2% h−1) and
increased at 8% h−1 at higher intensities, comparable
to the high-fit group. In other words, a normalized
BrAce, for instance, of 1.035 was obtained for the
high-fit individuals already at significantly lower VT2

of 20% than for the lower-fit group (i.e.∼90%), that

corresponds also to a much lower workload of 37 vs.
166 W, respectively. Similarly to BrAce, the normal-
ized fat oxidation rate increased until 20% VT2 and
reached a maximum of 2.27 ± 0.46 in the lower-fit
and 3.17 ± 0.51 in the high-fit group (figure 2(b)).
During the late exercise period, fat oxidation rate
decreased rather linearly almost reaching zero at
100% VT2 in both groups. There were no signi-
ficant differences in maximum normalized minute
volume between the groups (p = 0.13) which did
not correlate with BrAce during exercise (figure S1
(https://stacks.iop.org/JBR/15/016006/mmedia)).

3.3. BrAce and ketone bodymetabolism post
exercise
MaximumnormalizedBrAce during the post-exercise
period showed no significant difference between the
high-fit and the lower-fit group (p = 0.5; table 1).
However, normalized BrAce only modestly increased
at a rate of 4% h−1 during the first 75 min after ter-
mination of the exercise bout, whereas in the lower-fit
group, normalized BrAce initially showed an increase
of 19% h−1 rate (figure 3(a)). Interestingly, during
the last post-exercise period (starting 75 min after
exercise), normalized BrAce increased in the high-
fit group at a rate of 46% h−1 and less (29% h−1)
in the lower-fit group. Also, venous βHB increased
during the post-exercise period until 180 min in
both groups and attenuated afterwards (figure 3(b)).
The individual maximum normalized βHB was not
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Figure 2. Comparison of BrAce and fat oxidation during exercise. Normalized (a) BrAce and (b) fat oxidation rates during
exercise (0–55 min) in the high-fit (n= 13; squares) versus lower-fit (n= 7; circles) group. Values are normalized to their
baseline value (t= 0 min). Normalization to the individual baseline concentration was done to account primarily for exercise
effects. Error bars show the standard error of the mean (SEM).

significantly different in the high-fit (5.61 ± 1.25)
group than in the lower-fit group (3.78 ± 0.74;
p= 0.23; table 1).

4. Discussion

In agreement with previous studies, we found an
enhanced increase of BrAce during [15–17] and after
[7] submaximal aerobic exercise in comparison to

resting subjects [7]. Most importantly, we revealed
that BrAce rates were higher in high- compared
to lower-fit individuals during exercise, similar as
observed for fat oxidation. Therefore, BrAce seems
to indicate VO2peak-dependent responsiveness of
fat metabolism. In fact, previous studies indic-
ated higher exercise-related fat oxidation rates and
ketone body metabolism in highly fit individuals
as well, compared to those with lower fitness, as

6
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Figure 3. Comparison of BrAce and bloodβHB during the post-exercise period. Normalized (a) BrAce and (b) venous βHB
during a 3 h post-exercise period (0–240 min) in the high-fit (n= 13; squares) versus lower-fit (n= 7; circles) group. Values are
normalized to their baseline value (t= 0 min). Error bars show the standard error of the mean (SEM).

determined by indirect calorimetry [6, 19] and blood
assay [20].

There is a biochemical association between BrAce
and fat metabolism, but the specific characterist-
ics of this relationship and clinical utility are not
yet fully understood [37]. This study reveals that
the BrAce increase during submaximal aerobic exer-
cise reflects the fitness-dependent different respons-
iveness of fat metabolism (as shown by fat oxid-
ation measurement). This is an important finding

underlining the potential of non-invasive real-time
methods to monitor the metabolic response towards
an exercise stimulus. Further studies need to confirm
these observations in patients with obesity and meta-
bolic disorders.

It is important that normalized BrAce acetone
change was not correlated to respiratory minute
volume during exercise. Hydrophilic gases like BrAce
interact with the mucosa layers of the upper airways,
thus are affected only moderately by respiratory

7
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ventilation and coronary perfusion, as modelled
by Anderson et al. [38] and King et al. [39] and
demonstrated by forced expiratory [40] and breath
holding [41] maneuvers.

During post-exercise rest, maximum BrAce was
not significantly altered. However, the dynamics of
the changes per time differed between high-fit and
lower-fit subjects, in agreement with βHB. The later
increase of BrAce in the high-fit group might reflect
a delayed recovery of fat metabolism after longer
suppression during performance at high intensity of
100% VT2. In fact, the rate of increase was higher
in the high-fit group during the later post-exercise
period. Indeed, a stronger response of BrAce during
the 180min post-exercise period in the high-fit versus
the lower-fit individuals is expected. This assump-
tion was based on previous observations regard-
ing the CRF-dependency of post-exercise concen-
trations of irisin, a marker of adipocyte metabolic
activity [22].

Future studies during a longer post-exercise
period (e.g. 6 or 12 h) may clarify whether the
measurement of BrAce indicates different long-term
metabolic responses towards a training intervention
depending on an individual’s level of CRF. Metabolic
real-time monitoring during exercise complements
other lifestyle applications [42], for instance, sleep
[43], ketogenic diet [44, 45] and fasting [46] where
BrAce and other VOC are promising as well. There are
also efforts to engineer portable [47] detectors (e.g.
chemoresistive sensors [48]/arrays [49] or ion mobil-
ity spectrometers [50]) to monitor acetone routinely.

4.1. Strengths and limitations
We applied an exhaustive and individually adapted
exercise protocol and controlled for pretest dietary
habits, smoking, alcohol consumption, diurnal vari-
ations of metabolic state and pretest physical activ-
ity. Pulmonary and metabolic alterations [51] as well
as the female menstrual cycle [52] might be fur-
ther confounders, potentially increasing variability in
exercise-related dynamics in BrAce and fat metabol-
ism. In this context, body composition should also be
considered in upcoming studies, as fat metabolism is
frequently altered in people with obesity [53]. As the
positive association between BrAce and VO2peak did
not reach statistical significance, a small risk for stat-
istical type 1 mistake remains. Therefore, the repro-
duction of our study with larger samples is needed for
further clarification.

A strength of this study is the choice of gold
standard measures for all parameters and especially
the determination of CRF by strict adherence to
highest-level guidelines for exercise testing [27]. Also,
the comparison of BrAce with indirect calorimet-
ric fat oxidation rates has rarely been done in liter-
ature. Finally, the choice of an individualized sub-
maximal exercise intervention enabled physiological

reactions near real-life situations in a laboratory
setting.

5. Conclusions

This study demonstrates a higher respiration-
independent increase of BrAce during and after
exercise in high- than lower-fit subjects. The com-
parability of BrAce with rates of fat metabolism
underlines the potential of BrAce analysis for meta-
bolicmonitoring during exercise training and lifestyle
interventions. These results provide new insights for
the interpretability and clinical utility of BrAce meas-
urements during exercise training for therapeutic
guidance during lifestyle interventions.
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