Machine Learning-Based Prediction Models for Healthcare
Outcomes in Patients Participating in Cardiac Rehabilitation

A SYSTEMATIC REVIEW

Xiarepati Tieliwaerdi, MD; Kathryn Manalo, DO; Abulikemu Abuduweili, MS; Sana Khan, MD;
Edmund Appiah-kubi, MD; Brent A. Williams, PhD; Andrew C. Oehler, MD

Purpose: Cardiac rehabilitation (CR) has been proven to
reduce mortality and morbidity in patients with cardiovascular
disease. Machine learning (ML) techniques are increasingly
used to predict healthcare outcomes in various fields of medi-
cine including CR. This systemic review aims to perform critical
appraisal of existing ML-based prognosis predictive model
within CR and identify key research gaps in this area.

Review Methods: A systematic literature search was con-
ducted in Scopus, PubMed, Web of Science, and Google
Scholar from the inception of each database to January 28,
2024. The data extracted included clinical features, predicted
outcomes, model development, and validation as well as model
performance metrics. Included studies underwent quality
assessments using the IJMEDI and Prediction Model Risk of
Bias Assessment Tool checklist.

Summary: A total of 22 ML-based clinical models from 7
studies across multiple phases of CR were included. Most mod-
els were developed using smaller patient cohorts from 41 to
227, with one exception involving 2280 patients. The predic-
tion objectives ranged from patient intention to initiate CR to
graduate from outpatient CR along with interval physiological
and psychological progression in CR. The best-performing ML
models reported area under the receiver operating characteris-
tics curve between 0.82 and 0.91, with sensitivity from 0.77 to
0.95, indicating good prediction capabilities. However, none of
them underwent calibration or external validation. Most stu-
dies raised concerns about bias. Readiness of these models for
implementation into practice is questionable. External valida-
tion of existing models and development of new models with
robust methodology based on larger populations and targeting
diverse clinical outcomes in CR are needed.
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ardiovascular disease remains a leading cause of mor-
bidity and mortality globally, dlrectly causing over
19 million deaths worldwide in 2020 alone.! Cardiac reha-
bilitation (CR) is a comprehensive evidence-based interven-
tion tailored to patients with cardiovascular conditions such
as ischemic heart disease, heart failure, myocardial
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KEY PERSPECTIVE
What is novel?

o This systematic review is the first to critically appraise
existing machine learning (ML)-based clinical prog-
nostic models in cardiac rehabilitation (CR).

o It identifies key research gaps in ML application in
CR and provides constructive suggestions for improv-
ing the quality of ML models specifically in CR.

What are the clinical and/or research implications?

e The review demonstrates various clinical challenges
in the CR setting that ML models have been used to
address and their corresponding outcomes.

o It reveals potential limitations in existing models and
offers recommendations to enhance the readiness of
current and future models for implementation in clin-
ical settings as clinical decision-support tools.

infarction, or those undergoing cardiovascular interventions
such as coronary angioplasty or bypass grafting.””
Participation in CR has been shown to significantly reduce
morbidity and mortahty, improve functional capacity, and
enhance quality of life.*"! To optimize these benefits, exten-
sive clinical research has been conducted to 1dent1fy chal-
lenges within CR and develop strategies for improvement.’

5 Within this body of research, conventional statistical
methods (CSM), such as regression models, play a key
role. These CSM serve two primary purposes: inference
and prediction.'® Inference focuses on identifying associa-
tions between patient characteristics and clinical outcomes,
while Erediction estimates the likelihood of future out-
comes. ~ Although both tasks offer clinical value, CSM in
CR have predominantly been used for inference, identifying
risk factors linked to CR outcomes, with fewer studies
emphasizing prediction.'®?° For example, Kavanagh et al
used regression models to identify peak oxygen intake as the
strongest predictor of mortality. However, when predicting
1-year major adverse cardiovascular events, the model
demonstrated only modest performance, with an area
under the receiver operating characteristics (AUC-ROC)
curve of 0.66, reflecting the limitations of CSM in predic-
tion.*! These CSM also emphasize parsimony and interpret-
ability.?* Parsimony refers to the preference for simpler
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models with fewer predictors to avoid overfitting, while
interpretability ensures that results, like odds ratios, are
intuitive in terms of quantifying the effects of patient char-
acteristics on outcomes.>> However, this simplicity can
come at the cost of predictive accuracy, where more com-
plex models, such as those in machine learning (ML), tend to
excel.®

As a branch of artificial intelligence, ML holds great
potential for achieving high predictive power in complex
datasets, such as healthcare data, due to its ability to detect
nonlinear relationships and recognize patterns and interac-
tions among large combinations of variables and out-
comes.>* While this strength may come at the expense of
interpretability, it offers significant clinical value in predic-
tion tasks and complements CSM. For example, as wearable
devices become more common in CR, particularly in home-
based programs that generate millions of continuous data
points such as vital signs, oxygen consumption, and cardiac
monitoring, ML can efficiently process these large datasets,
surpassing the capacity of CSM.?* This enables the predic-
tion of patient progression and helps providers guide perso-
nalized exercise therapy for subsequent sessions, ultimately
optimizing patient outcomes.>*2° Additionally, the capacity
of ML to process multimodal data, a task technically unfea-
sible for CSM such as patient queries, provider handwritten
notes, electrocardiographic tracings, and imaging like echo-
cardiograms, opens possibilities for more comprehensive
and personalized patient care through ML approaches.>%32

Recent literature has seen a proliferation of systematic
reviews and meta-analyses aimed at evaluating the perfor-
mance of ML-based clinical prediction models in different
fields of medicine.?*"3* However, to the best of our knowl-
edge, there has yet to be a systematic review of ML predic-
tive models in CR. The primary aim of this review is to
evaluate existing literature regarding ML predictive models
in the context of CR and provide a systematic appraisal of
these models from their development to validation. We aim
to compare performance metrics, validation processes, and
appropriateness of algorithms used in CR, as well as identify
key research gaps in this area.

METHODS

LITERATURE SEARCH STRATEGY

The literature search and related statistical analyses were
conducted in accordance with the guidelines of the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
Statement.>® We comprehensively searched publications from
database inception to January 28, 2024 in Google Scholar,
PubMed, Web of Science, and Scopus. Keywords used for the
search included a combination of terms related to ML and
CR. The full search strategy, including the specific combina-
tions of search terms used in each database, was provided in
Table 1, Supplementary Digital Content available at: http:/
links.lww.com/JCRP/AS593.

INCLUSION AND EXCLUSION CRITERIA
In our review, we included studies that employed an ML
model to predict clinical progression, health outcomes, or
risk stratification in a cohort of adult patients participating
in any phase of CR. We did not restrict it by the country of
origin or publication source. For clarity, we defined ML as
algorithms, such as random forest analysis, support vector
machines, and neural networks, that are more complex than
logistic regression models and capable of making decisions
based on data patterns.

Our inclusion criteria were structured using the popula-
tion, intervention, comparison, outcome, and time approach
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as follows: (1) Population: Adult patients aged 18 years or
older engaging in CR programs; (2) Intervention: Studies used
ML models for predicting outcomes in CR; (3) Comparison:
Not applicable, due to the lack of a universally accepted
prognostic model in CR; (4) Outcome: Studies reporting on
clinical progression, health outcomes or risk stratification
outcomes; (5) Time: Studies that harnessed features to predict
outcomes after any given follow-up period were accepted.>”
In terms of study design, we did not restrict the types of
studies included. Retrospective, prospective, cross-sectional,
cohort, and case-control studies as well as randomized con-
trolled trials were all considered for inclusion.

Exclusion criteria were: (1) studies not in English; (2)
studies not involving ML-based predictive models: for
example, studies reporting novel ML-based wearable
devices used for monitoring biomarkers such as heart rate
or blood pressure were excluded; (3) studies where predic-
tive models are not developed from patients in CR; (4)
studies focusing on identifying predictors associated with
outcomes rather than developing a prognostic model. (5)
Reviews, case reports, and studies not available in full text
were excluded.

DATA EXTRACTION
Duplicate records were initially removed using auto-dedu-
plication function in EndNote 21, followed by a manual
check for complete deduplication. The screening of titles
and abstracts was then carried out in EndNote 21, adhering
to the inclusion and exclusion criteria previously outlined.
A team of 4 reviewers (X.T., K.M., S.K., and E.A.) assessed
articles for eligibility first by screening titles and abstracts to
ensure relevance in EndNote; each study was independently
assessed by at least 2 reviewers. Both agreed-upon and con-
flicting articles were retained for second-round screening
based on full-text review. The full-text evaluation was inde-
pendently carried out by the reviewers (X.T. and A.A.).
Disagreements were resolved through mutual consensus.
The data from the included articles were independently
extracted into tables by 2 authors (S.K. and K.M.). They
then reviewed and compared each other’s work to identify
and resolve any discrepancies. Any unresolved discrepancies
were addressed through discussion or consultation with
a third reviewer (X.T.). Variables were extracted and tabu-
lated in Excel 2020, which includes (1) baseline character-
istics of studies; (2) features and ML algorithms used for the
development of the models; (3) objectives of the prediction
models as well as evaluation index for their performance,
including AUC-ROC or abbreviated as AUC, accuracy, pre-
cision, sensitivity, and specificity; (4) methods employed for
model validation.

QUALITY ASSESSMENT

The quality of the included studies was evaluated indepen-
dently by 2 reviewers (X.T. and A.A.) by using the [J]MEDI
checklist.*® The IJ]MEDI checklist is developed specifically for
use in medical research. The IJMEDI checklist distinguishes
high-quality ML research, which involves rigorous model
development, validation, and clinical relevance, from studies
that merely apply ML methods to medical data without thor-
ough consideration of algorithm suitability or real-world clin-
ical applicability. It focuses on 6 key aspects: problem
understanding, data understanding, data preparation, model-
ing, validation, and deployment, encompassing a total of 30
detailed questions. These questions were categorized into
high- and low-priority based on their relative importance in
assessing study quality. High-priority questions were scored
as follows: 2 for adequately addressing the [JMEDI checklist
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requirements (OK), 1 for moderately addressing with poten-
tial for improvement and requiring minor revisions (mR), and
0 for inadequately addressing, requiring major revisions
(MR), in accordance with the IJMEDI checklist. Low-priority
questions were scored as 0 for OK, 0.5 for mR, and 1 for MR.
The point-scoring approach used in our study is not described
in the original IJMEDI reference but was adopted by multiple
publications to reflect the quality of studies being evalu-
ated.>*' Studies were then classified into 3 quality cate-
gories: low (0-19.5 points), medium (20-34.5 points), or
high quality (35-50 points).

We also employed the Prediction Model Risk of Bias
Assessment Tool (PROBAST) checklist, which is designed
for evaluating the risk of bias and applicability of diagnostic
and prognostic prediction model studies.*>** Each study is
evaluated in 4 key domains: participants, predictors, out-
come, and analysis. Each domain encompasses signaling
questions with responses guiding an overall judgment of
bias risk as “Low”, “High”, or “Unclear”. The signaling
questions are answered as “Yes”, “No”, “Probably yes”,
“Probably no”, or “No information”, with “Yes” generally
indicating lower bias. The overall risk of bias and applicabil-
ity for each study is determined based on these domain
judgments.

RESULTS

From the initial search that yielded 151 records, 84 were
excluded following a review of the title and abstract, and 60
records were excluded after full-text review. In the end, 7
studies met the inclusion criteria and were included in our
systemic review. The process of screening and study selec-
tion is shown in Figure 1.44°°

STUDY CHARACTERISTICS

The characteristics of studies using ML prediction models in
CR are summarized in Table 1. Seven studies are included,
one of which is a multicenter study conducted in Belgium
and Ireland.*® The rest are single-center studies from
Australia, Belgium, Italy, Malaysia, and Chile.***547-50
Study designs include 5 retrospective studies, one cross-sec-
tional study, and one that combines retrospective and pro-
spective approaches.***° Most studies target phase Il of CR,
with one addressin§ phases II and III and another focusing
solely on phase III.***¢ Participant ages were reported in 4
of the 7 studies, with mean ages ranging from 63 to
67.98 years.***7:#950 The percentage of female participants
is reported in 3 studies and varies from 19% to 27%, while
the other 4 studies do not report sex distribution.*”>4*-5
Patients included were typically referred to CR, with one
study specifying the prerequisite of being employed prior to
a cardiac event.*® The studies generally excluded patients
lacking post-rehabilitation data, those with contraindica-
tions to exercise, or those unwilling to participate.
Functional sample sizes range significantly from 41 to
2280 across the studies.

MODEL CHARACTERISTICS

A summary of characteristics of ML models included in our
review is presented in Table 2. Each study has different
prediction goals, ranging from forecasting a patient’s inten-
tion to begin CR to estimating their adherence to the pro-
gram. Two studies aimed to predict patient prognosis in CR
including 6-minute walk distance and various physiological
and psychological outcomes such as cholesterol level and
depression level changes after outpatient CR.**%7
Additionally, 2 studies focused on predicting patient

Characteristics of Studies Using a Machine Learning Prediction Model in Cardiac Rehabilitation

Functional
Study Rehab Study Age Female Sample
Study (yr) Location  Phase Design (yr) (%) Cohort Inclusion Criteria Cohort Exclusion Criteria Size
Van et al Australia Il'and Il Retrospective ~ Mean: NR Patients referred to CR Patients did not have post-rehab data 2280
(2010)%® 65.35 or where values in target attributes
were missing
Lofaro et al ltaly II Retrospective  Mean: 19 Patients admitted for CR after NR 129
(2016)* 67.98 CAD or MI
De Canniére  Belgium II Retrospective  Mean: 27 Patients eligible for CR Patients who were unable to exercise 89
et al 63 or didn't complete the total study
(2020)*"
Jahandideh  Australia Il Cross- Mean: 26 Patients referred to outpatient CR  Patients who were too ill or unable to 217
et al sectional 63 speak English
(2021)*
Yuan et al Malaysia II Retrospective ~ >18 NR Patients referred to CR and Patients who were pensioners or 184
(2023)*° employed prior to having unemployed
a cardiac event
Filos et al Belgium and III Retrospective  40-80 NR Patients completed a phase Il CR  Patients who dropped out or exercised 1
(2023)*° Ireland and enrolled in Internet-based very sparsely
home CR
Torres etal  Chile Il Retrospective ~ >18 NR Patients referred to CR Patients who had any contraindication 227
(2023)* and to physical exercise
prospective

Abbreviations: CAD, coronary artery disease; CR, cardiac rehabilitation; MI, myocardial infarction; NR, not reported.
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Identification of studies via databases and registers

Records identified from databases (n
=272)

PubMed: 12

Web of Science: 22

Scopus: 3

Google scholar: 235

Identification

Records screened
(n=151)

A

Reports assessed for eligibility
(n=67)

Studies included in the review
(n=7)

[ Included ] [ Eligibility ] [ Screening ]

Duplicate records removed
(n=121)

Records excluded after title and
abstract screening
(n=84)

Reports excluded (n=60):
Reason 1 (n=4)
Reason 2 (n =17)
Reason 3 (n =27)
Reason 4 (n =2)
Reason 5 (n =10)

Figure 1. PRISMA flowchart of the review process for studies using a machine learning prediction model in cardiac rehabilitation.Adapted from PRISMA
2020 flow diagram for new systematic reviews, source: Page MJ, et al. BMJ 2021;372:n71. doi: 10.1136/bmj.n71. This work is licensed under CC BY
4.0. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/

disposition post-CR, such as likelihood of returning to work
as well as the transition from one phase of CR to
another,***8

These studies utilized a variety of patient features to
develop their models. These features encompassed anthro-
pometric measurements such as body mass index and waist
circumference, demographic information, and medical his-
tory especially cardiovascular health. Psycho-behavioral
profiles were also considered in most of the studies including
evaluation of anxiety and depression levels. Laboratory test
results and physical fitness levels were commonly used. Two
studies harnessed specific imaging like electrocardiogram
and transthoracic echocardiogram.*”

The number of features used across the studies varies, with
one utilizing as few as 17 features and others up to 82.%-°°
Most studies used pre-processing techniques for feature selec-
tion to reduce the number of input variables to those that are
most important to the predictive model to improve perfor-
mance and reduce computational cost. Random forest and
principal component analysis were most employed.***8*°

OnLy 2 of the 7 studies reported methods to handle missing
data.***° In terms of ML algorithms, there was a wide array
employed across these studies, from basic decision trees and
support vector machines to advanced ensemble methods like
AdaBoost and XGBoost. Three of 7 studies used a single algo-
rithm, the other 4 compared multiple different algorithms, with
decision trees, random forest, and support vector machines
being the most adopted.**#¢-#%:30
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PERFORMANCE AND VALIDATION

The best ML models, including their performance metrics
and validation approaches, are outlined in Table 3. The
performance of these models was evaluated using various
metrics such as AUC-ROC curve, sensitivity and specificity,
mean absolute error, and normalized mean squared error.
The selection of best-performing ML algorithm varied based
on each study’s objectives. The best-performing models in
their respective tasks reported AUC values between 0.82 and
0.91, sensitivity ranging from 0.77 to 0.95, demonstrating
good predictive capabilities.***¢ Six out of 7 studies
employed internal validation techniques, with cross-valida-
tion being the most prevalent method.***%5% However,
none of the studies underwent external validation, meaning
they were not validated on data from populations different
from those used to develop the models, nor were their pre-
dictions calibrated against real-life observed outcomes.

QUALITY ASSESSMENT

The scores for each dimension and the total score of each
study according to the IMED checklist are summarized in
Table 4. The included studies had an average score of 30.8,
with a range from 26 to 35. Most of the studies fell into the
medium-quality category, and one study stood out as being
of high quality.** Most studies demonstrated a discernible
bias in the “Data Preparation,” “Validation,” and
“Deployment” dimensions, with lower scores that suggest

www.jcrpjournal.com
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Characteristics of Machine Learning Prediction Models Used in Cardiac Rehabilitation

Features Used for Prediction

Object of Feature
Study (yr) Prediction Type Number  Missing Data Handling Selection ML Algorithms
Van et al Physiological Anthropometric measurements, 49 Cases with >25% of missing ~ RF, PCA DT
(2010)%® and sociodemographic, psycho-behavioral data were discarded,
psychosocial profile, medical history, laboratorial tests, otherwise were replaced by
outcomes of physical fitness level mean or mode
CR
Lofaro et al  Patient-specific ~ Anthropometric measurements, socio- 17 Variables with >50% of None Lasso regression, SVM,
(2016)* CR exercise demographics, medical history, missing data were RF, Bagged FDA,
program laboratory tests and images (PFTSs), discarded Boost C 5.0, Bagged
physical fitness level CART
De Canniére  6-min walk Anthropometric measurements, psycho- NR NR None SVM, linear regression
et al distance behavioral profile, medical history,
(2020)" laboratory tests and images (EKG, TTE),
physical fitness level
Jahandideh  Individual’s Anthropometric measurements, socio- 82 NR RF RF
et al intention to demographics, medical history,
2021y engagein CR perceived need for CR
Yuan etal  Ability to return  Anthropometric measurements, socio- 30 NR Recursive DT, RF, AdaBoost,
(2023)*° to work after demographic and psychosocial profile, feature XGBoost, CatBoost,
CR. medical history, laboratory tests, physical elimination SVM, Complement
fitness level Naive Baye
Filos et al 6-mo adherence Anthropometric measurements, psycho- 52 NR None DT and RF
(2023)*° to home- behavioral profile, laboratory tests,
based CR physical fitness level
Torres et al  Probability of Anthropometric measurements, psycho- 44 NR PCA, correlation  XGboost, gradient
(2023)* progression behavioral profile, laboratory tests and analysis boosting, SVM, RF,
from CR images (EKG and TTE), physical fitness KNN
phase Il to lll level

Abbreviations: CR, cardiac rehabilitation; DT, decision trees; EKG, electrocardiogram; FDA, flexible discriminant analysis; KNN, k-nearest neighbors; LASSO, least absolute shrinkage and selection
operator; ML, machine learning; NR, not reported; PCA, principal component analysis; PFT, pulmonary function test; RF, random forest; SVM, support vector machine; TTE, transthoracic

echocardiogram; XGBoost, Extreme Gradient Boosting.

these areas may have impacted the overall quality and relia-
bility of the outcomes.

The percentage of studies rated by the level of concern
regarding risk of bias and applicability for each domain
according to the PROBAST checklist is presented in
Figure 2. It reveals a predominantly low risk of bias in
“Participants” and “Predictors” at 100% and 86% of
included studies, respectively, with similarly low applic-
ability concerns. However, a significant 71% of studies
were considered to have a high overall risk of bias,
which may be attributed to the “Analysis” domain,
where 57% of studies show high risk of bias. A detailed
evaluation of each study is provided in Table 2,
Supplemental Digital Content available at: http://links.
lww.com/JCRP/A593.

DISCUSSION

This review has evaluated the performance of 22 ML-based
clinical models in 7 studies aiming to predict healthcare out-
comes for patients participating in CR. The prediction objec-
tives ranged from patient intention to initiate CR to graduate
from outpatient CR as well as interval physiological and
psychological changes during the program. The best-per-
forming ML models in their respective tasks reported AUC
between 0.82 and 0.91 and sensitivity from 0.77 to 0.95,
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demonstrating good prediction capabilities in general.’* The
majority of the included studies were rated as medium quality
according to the I[JMEDI checklist and there were high con-
cerns for bias per PROBAST assessment. Meta-analysis was
not conducted as the included ML models were highly hetero-
genous in terms of targeted population, prediction objectives,
outcome measurement, and validation.

An ideal clinical prediction model should correctly distin-
guish between patients who will develop certain events and
those who will not without misclassification in any case.*>
Its quality is associated with 2 properties of the model: discri-
mination and calibration. Discrimination is the model’s capa-
city to correctly separate individuals at higher risk of an event
from those at lower risk. Calibration refers to the model’s
ability to estimate absolute risks accurately.>® Discrimination
is typically measured by the AUC values. It can also be assessed
by sensitivity and specificity.>* However, sensitivity and speci-
ficity vary as the cut point used to determine “positive” and
“negative” test results changes. The ROC curve is a graph of
the sensitivity of a test versus its false-positive rate (1-specici-
ficy) for all potential cut points. The AUC value represents
average prediction accuracy after balancing the inherent trade-
offs that exist between sensitivit;/ and specificity across the
spectrum of varying cut points.”> A higher AUC indicates
better discrimination ability. An AUC of 0.5 suggests no dis-
crimination, equivalent to random guessing, while an AUC of
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Performance and Validation of Machine Learning Prediction Models in Cardiac Rehabilitation

Best ML External Practice
Study (yr) Algorithm Performance Metrics Validation Methods Validation Implementation
Van et al (2010)* DT AUC: 0.815; accuracy: 0.769; Internal validation: 10-fold None None
precision: 0.734; sensitivity: 0.769 cross-validation
Lofaro et al (2016)* Lasso Accuracy: 0.935; precision: 0.941; 5-fold cross-validation None None
Regression sensitivity: 0.9
De Canniére et al SVM MAE: 42.8 m 20-fold-validation; None None
(2020
Jahandideh et al RF Accuracy: 0.715 NR None None
(2021)*
Yuan et al (2023)39 AdaBoost AUC: 0.924; accuracy: 0.864; sensitivity: 0.928; 10-fold cross-validation None None
specificity: 0.733
Filos et al (2023)*° DT Sensitivity: 0.945; precision: 0.80 10-fold cross-validation None None
Torres et al (2023)* XGboost NMSE: 0.008; £ 92% 10-fold cross-validation None None

Abbreviations: AUC, area under curve; DT, decision tree; LASSO, least absolute shrinkage and selection operator; MAE, mean absolute error; ML, machine learning; NMSE, normalized mean
squared error; RF, random forest; SVM, support vector machine; XGBoost, Extreme Gradient Boosting.

1.0 indicates perfect discrimination.>® Van et al reported an
AUC of 0.815, which suggests good discrimination in predict-
ing post-rehab deterioration.** Yuan et al reported an AUC of
0.923, reflecting the model’s excellent effectiveness in predict-
ing patient likelihood of return-to-work.*> Two studies
reported sensitivity and precision rather than AUC as perfor-
mance metrics, reflecting the model’s performance for
a particular cut point instead of all possible thresholds.*¢-*°
One study reported accuracy only, measuring the proportion
of true results, including true positives and true negatives. High
accuracy can sometimes be misleading if the outcomes that the
ML model aims to predict occur frequently in the study popu-
lation. Jahandideh et al claimed an accuracy of 0.715 in differ-
entiating highly motivated patients for CR initiation but did
not report the distribution of motivation levels in the study
population.*” This could lead to overestimation of accuracy in
a predominantly motivated group or underestimation in a less
motivated one. Overall, the reviewed studies used various
evaluation metrics, the appropriateness of which is generally
acceptable but could benefit from a more comprehensive mea-
surement approach.

Model calibration is typically assessed after its discrimi-
nation is deemed acceptable. Calibration refers to how well
a model’s predicted absolute probability aligns with the true
likelihood of the outcomes.***”>*® None of the included ML
models underwent calibration, so their ability to predict
absolute risk remains uncertain. Although they have demon-
strated overall good discrimination, calibration is essential
to prove their capability in clinical decision support. This
limitation contributed to lower scores in the deployment
section of the IJMEDI checklist and a high risk of bias per
the PROBAST checklist as shown in Figure 2 and Table 4.
Another major deficiency is the lack of external validation,
which tests model efficacy in a different population than it
was initially derived from. Without robust external valida-
tion, a model’s generalizability is questionable.’” One nota-
ble example is that the National Institute for Health and
Care Excellence recommended an independent external vali-
dation of QRISK2 and the Framingham risk score, which
were performed subsequently and demonstrated systematic
miscalibration of the Framingham risk scores and led to the
need for different treatment thresholds in the UK cohort.*’
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Although some cases may not require immediate external
validation if the sample size is large and representative of
predictors and target outcomes on top of appropriate inter-
nal validation, most studies in our review, with populations
ranging from 41 to 227 (except one with 2280 patients),
would benefit from external validation as a key step toward
implementation into clinical practice.®®

In addition to methodological robustness in model devel-
opment, a useful clinical prediction model should address
clinically significant issues. Low enrollment and adherence
remain major challenges for CR."> Khatanga et al used
logistic regression to identify factors such as surgical diag-
nosis, non or former tobacco use, and intensity of physician
recommendation as independent predictors for CR partici-
pation, whereas factors including anxiety, depression, or
executive function had no significant impact.®! Other stu-
dies have suggested that age, low socioeconomic status,
gender, CR center location, and psycho-behavioral factors
including lack of motivation and reduced self-efficacy are
barriers to participating in CR based on CSM.'3¢%¢3 The
study by Jahandideh et al developed a model predicting
individual motivation to participate in CR based on factors
such as demographics, medical history, perceived need, out-
come expectations, self-efficacy, and barriers.*” The find-
ings revealed that the significance of these variables varied,
influencing motivation differently for each individual. Based
on the model’s predictions, providers could identify the most
significant barriers or motivators, enabling more targeted,
individualized interventions. The Filos et al study empha-
sized that adherence during the first 6 weeks of a home-
based CR program is crucial for predicting long-term adher-
ence.*® Patients adhering during this phase had a 92%
chance of continued participation, while those struggling
had a non-adherence risk of 56%. This provides decision-
makers with insights to allocate resources and supervision
more intensively during the early phase of CR, enabling
early identification of patients at risk for low adherence.
Future research could leverage the capacity of ML for
remote monitoring and real-time big data analysis to predict
optimal CR modalities, including single or mixed models
that combine home-based, facility-based, and community-
based programs for better outcomes. Studies could also
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Results of the Quality Assessment According to the IJMEDI Checklist of Machine Learning Prediction Models in Cardiac Rehabilitation®®

Van et al Lofaro et al De Canniére et al Jahandideh et al Yuan et al Filos et al Torres et al
Study (yr) (2010)*® (2016)* (2020)*" (2021)%® (2023)* (2023)%° (2023)*2
Problem 8.5 8.5 9.5 9 95 95 9
understanding (10)

1 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
3 0.5 05 1 1 1 1 1
4 2 2 2 2 2 2 2
5 2 2 2 2 2 2 2
6 0 0 0.5 0 0 0 0
Data understanding (6) 4 3 4 4 3 3 4
7 1 2 2 2 1 1 0
8 1 1 1 1 1 1 2
9 2 0 1 1 1 1 2
Data preparation (8) 6 1 1 3 4 2 3
10 0 0 0 0 0 0 0
1 2 0 0 1 1 0 1
12 2 1 1 2 2 2 1
13 2 0 0 0 1 0 1
Modeling (6) 6 6 6 6 6 6 6
14 2 2 2 2 2 2 2
15 2 2 2 2 2 2 2
16 2 2 2 2 2 2 2
Validation (12) 8 6 6.5 4 7 6 8.5
17 2 1 1 1 2 2 2
18 2 2 2 1 1 1 2
19 0 0 0 0 0 0 0
20 2 1 1 1 2 2 2
21 0 0 0 0 0 0 0
22 2 2 2 1 2 1 2
23 0 0 05 0 0 0 05
Deployment (8) 2.5 1.5 3 3 3.5 2.5 3
24 1 1 1 1 1 1 1
25 0.5 05 05 1 1 0.5 05
26 0.5 0 1 0.5 1 0.5 1
27 0.5 0 0.5 0.5 0.5 0.5 0.5
28 0 0 0 0 0 0 0
29 0 0 0 0 0
30 0 0 0 0 0
Total (50) 35 26 30 30 33 29 335

fltems in bold indicate high priority.
PHigh-priority questions were scored as 2 for adequately addressing the IJMEDI checklist requirements (OK), 1 for moderately addressing with potential for improvement and requiring minor
revisions (mR), and 0 for inadequately addressing, requiring major revisions (MR). Low-priority questions were scored as 0 for OK, 0.5 for mR, and 1 for MR.

explore the ideal balance of current interventions for each ~ STRENGTHS AND LIMITATIONS OF THIS STUDY

individual, such as exercise training, health behavior mod-  The major strengths of this review include a comprehensive
ification, patient education, and nutritional and psychologi-  search and meticulous selection of studies, focusing on ML-
cal counseling, providing valuable insights for decision-  based clinical prediction models in CR. Key characteristics
makers to promote adherence and optimize outcomes. such as predictors, data processing, ML algorithms, and
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ROB introduced by selection of participants

ROB introduced by selection of predictors

ROB introduced by measurent of Outcome

ROB introduced by analysis methods

Overall judgement of ROB

0%

Concerns that participants don't match the
target population

Concerns that predictors aren't relevent or
available

Conerns that the outcome isn't clinically
relevent

Overall judgement of applicability

20% 40% 60% 80% 100%

Low (%)

= High (%)

Unclear
(%)

Figure 2. Results of the risk of bias assessment according to PROBAST checklist for studies using a machine learning prediction model in cardiac

rehabilitation. Abbreviation: ROB, risk of bias.

their performance were extensively extracted and analyzed.
A significant highlight is the use of specialized ML-targeted
quality assessment tools, namely the PROBAST and IJMEDI
checklists, ensuring a thorough and rigorous evaluation of
model quality and bias. However, the review has several
limitations. The scope was confined to only 7 studies, fea-
turing 22 ML models, possibly not representing the full
spectrum of research in this area. Geographical limitations
are evident, with no studies included from North America or
Asia, potentially affecting the applicability of the findings.
The high heterogeneity among the models precluded
a comparative analysis and meta-analysis, limiting our abil-
ity to determine the effective prediction model in specific
tasks related to CR. Notably, the lack of calibration and
external validation of these models raises concerns regard-
ing their potential for clinical practice implementation.

RECOMMENDATIONS FOR FUTURE STUDIES

First, future research should focus on developing new pre-
diction models utilizing larger patient samples that encom-
pass greater diversity in sociodemographic characteristics,
risk factors, and healthcare outcomes. In contrast to the
abundance of ML prediction models in other fields of car-
diovascular diseases, there is a paucity of ML-based models
related to CR.®*%7 It is likely due to a shortage in large
datasets in the CR population compared to the general
population with cardiovascular diseases, where large data-
sets like the Cleveland, University of California repository
and Massachusetts Institute of Technology-Beth Israel
Hospital arrhythmia database are available.®*°%° The
development of large datasets in CR is challenging due to
low utilization of CR and limited communication and col-
laboration among CR programs.'>’® The American
Association  of  Cardiovascular and  Pulmonary
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Rehabilitation CR registry represents a meaningful step for-
ward in this area and may serve as a foothold for future ML-
based research in CR. Machine learning is often considered
to be “data hungry,” where larger sample sizes with more
cases of relevant predictors and target outcomes generally
lead to better performance.”” The lack of a large sample pool
has posed a significant challenge for developing effective ML
prediction models. To address this, collaboration among
multiple centers is essential, as modeled by the American
Association  of  Cardiovascular and  Pulmonary
Rehabilitation data registry. Additionally, expanding
research to include not just facility-based CR populations
but also those community-based or home-based CR pro-
grams could be a viable solution, as novel methods for the
delivery of CR via virtual and remote options are becoming
more common.”> Second, exploring more advanced ML
algorithms is recommended, with a strong emphasis on strict
adherence to guidelines from data preparation through to
model validation.*>”? Algorithms such as artificial neural
networks should be considered due to their potential super-
ior accuracy and lesser dependence on feature selection.”*
Third, conducting calibration and external validation of
existing datasets is highly valuable. Additionally, perform-
ing head-to-head comparisons between different ML-based
prediction models and CSM, targeting similar tasks in com-
parable populations is also beneficial. These steps will sig-
nificantly increase the potential for ML models to be
integrated into clinical practice as effective decision-support
tools.

CONCLUSION

There’s a scarcity of ML-based clinical prognostic models
for predicting healthcare outcomes in CR participants.

www.jcrpjournal.com



While current models show good predictive capacities, the
lack of standard practices in methodologic reporting and the
absence of external validation limit the ability to compare
models and diminish the clinical relevance of any individual
model. Future research should focus on developing new
prediction models aimed at various outcomes in more

diverse

populations using robust methodological

approaches. Additionally, enhancing the generalizability of
existing models through external validation is necessary.
There is still a long journey ahead before these models can
be fully embraced in clinical settings.
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